Designer of the DNA Code
avatar

For since the creation of the world God’s invisible qualities—his eternal power and divine nature—have been clearly seen, being understood from what has been made, so that people are without excuse.”  Romans 1:20

People have always been able to learn something about God from what God has created.  But as science has advanced, and has revealed more and ever more of the once-hidden secrets of the physical and biological worlds, we can appreciate more deeply the wonderful creative power of God.

The field of genetics, for example, has seen rapid progress in the past few decades.  It has been known for well over a century—ever since Gregor Mendel conducted his famous experiment on garden peas—that parents have something called “genes” that they donate to their offspring during reproduction, and that these “genes” determine the physical characteristics of the offspring.  Genes were just a concept, however, not a biological structure, and scientists didn’t know where the genes would be found in living organisms.

Scientists soon realized that the genes were most likely associated with threadlike microscopic structures in the nuclei of cells, called chromosomes.  Chromosomes come in pairs, and in sexually reproducing organisms, each parent donates one chromosome from each pair to the offspring.  This biological process mirrored Mendel’s laws of inheritance, strongly indicating that chromosomes contained the “genes.” But chromosomes were composed of proteins and nucleic acid, and scientists didn’t know which contained the “genes.”

DNA Discovered

One of the most remarkable discoveries of the middle 20th Century was that the genes are contained in Deoxyribonucleic Acid—DNA.  DNA is a chain of molecules (a polymer) in the shape of a “double helix,” which looks like a ladder twisted into a corkscrew. The two sides of the ladder are composed of alternating sugar and phosphate groups. Protruding from each sugar group is one of four nitrogenous bases: adenine, guanine, cytosine, and thymine. Each base binds with a base protruding from the other side of the ladder to form the “rungs” of the ladder.

Because the pairs of bases that form the “rungs” of the ladder can be in any order, DNA can carry information.  Just as the order of letters determines the meaning of words, and the order of the words determines the meaning of a sentence, the order of the DNA bases determines what amino acids are specified, and the order of the amino acids determines what proteins are formed when the DNA is “transcribed” and “translated.” That molecular genetics has borrowed from linguistics such terms as “transcribed” and “translated” indicates how information-rich DNA really is.

Another analog to DNA is digital code.  Digital information is stored and expressed in a code of ones and zeros; the arrangement of those ones and zeros contains the information.  In recent years, most of our audio and visual information—most of our movies, music, television, and telephone communication—is stored in digital format, which in its most basic form is just ones and zeros.

Just as a machine—a computer—reads the digital code of ones and zeros to produce our movies and music, cellular machines read the DNA code to produce the proteins necessary for life.  During transcription, an extremely complex machine called RNA polymerase binds to the DNA at a “promoter site” and moves along the gene locally unzipping the double helix and forming a complementary polymer called “Messenger RNA,” a molecule much like DNA.  Translation is a similar but even more complex manufacturing operation that involves another bio-machine traveling along the strand of Messenger RNA, collecting amino acids and concatenating them into a protein.

There is no question that the order of DNA bases constitutes a code, a language that communicates intelligent information.  The function of the DNA code is to direct the manufacture of the proteins that build us into what we are.  Now, if we have a code that has a purpose, that is designed to do something, we know that there was an intelligent code-maker.

Where there is a program, there is a programmer who programmed it.

Where there is writing, there is a writer who wrote it.

Where there is music, there is a musician who composed it.

Where there is an engine, there is an engineer who designed it.

Wherever there is intelligent information, some intelligent being has created that information. This is a law of life to which there are no exceptions.

That there exists a molecule in which the information necessary to make a human being is encoded and stored proves that there was a creator who put the information into that molecule.  It is as simple as that.

We don’t understand the DNA program nearly as well as we understand computer programs.  A good programmer can read through a program and say, “it’s designed to do this, this and this,” but because the genetic code is much more complex—and was written by God, not man—scientists understand thoroughly only about five percent of it, the part that controls the synthesis of proteins.  The rest is not so well understood; the way it works is only slowly coming into focus.  It was once called “Junk DNA,” but enough of its functions are now known to make that term obsolete.

Copying Errors

Sometimes, errors creep into our DNA during replication, or copying, which is yet another machine-like process that is incredibly fast and incredibly accurate.  DNA polymerase moves along the DNA strand, unzipping it and synthesizing two new ladder sides and two new half-rungs at the pace of 1000 base pairs per second.  (If the DNA molecule were enlarged to a width of one meter, and DNA polymerase scaled up to the size of a truck, the truck would be moving along the molecule at 375 miles per hour as it copied it.)  And the speed doesn’t seem to adversely effect the accuracy.  The polymerase makes a mistake less than once every billion base pairs copied, and even those are usually corrected by proofreading polymerases.  But every once in a great while, a DNA copying error remains uncorrected.

Our experience with codes is that small errors may interfere with or even prevent them from performing their function.  In college, I had the misfortune of having to learn a computer language called COBOL.  One day I had written a program and was trying to get it to “compile,” and, alas, it would not.  I studied my code for a long time, but could find no errors.  Finally, I gave up and took it to the instructor, who noticed that one period was missing from one line of the code.  One tiny dot was missing, and the program would not work at all.

Just as with computer code, an error in the DNA code often causes problems.  Life was designed so that minor genetic errors may be harmless, or may be “masked” by a healthy gene donated by the other parent.  But inheritable genetic copying errors are usually harmful, and sometimes fatal.  Inheritable DNA copying errors cause over 5,000 different disorders and diseases.  Clearly, a DNA copying error is something to be avoided, if possible, and our cellular machinery is superbly designed to avoid copying errors.

Incredibly, the modern theory of evolution is based upon the idea that these mutations—these random, typically harmful DNA copying errors—have somehow created new, intricate biological mechanisms, new complex functional organs, and ultimately whole new organisms.  The theory posits that genetic copying errors accumulated one by one, and, over hundreds of millions of years, a single-celled organism diversified into all the plants and animals that we see in the creation around us.  It is a remarkable claim, not least for being contrary to everything we know about codes.

If you think you can change an existing computer program into a new and different program by introducing a small mistake every once in a while, you’re in for a rude shock.  After very few errors, your program will be useless and your computer will crash.  To get a new program that does something different, a programmer must write a new program.

Do you think you will get a better piece of music if you copy it and some of the notes don’t get copied and are lost?  Do you think you will get a better book, if you copy it a million times, and a letter goes missing every time you copy it?  Do you think Don Quixote will turn into War and Peace if you copy it 50 million times, with an error occurring every other time you copy it (an analogy suggested by Dr. David Berlinski, see here)?  Of course, no one believes that such things could ever happen.  If you want Don Quixote, you’ve got to get Cervantes to write it.  If you want War and Peace, Tolstoy must write it.  If you want Eine Kleine Nachtmusik, you need Mozart to compose it.

The same is true of the codes that control the building of organisms.  If you have a fish and you want a horse, no amount of DNA copying mistakes will get you from the fish to the horse.  God coded the genetic information necessary to make the fish, and God will have to write the code necessary to make the horse. The idea that DNA copying errors will bridge the gap from the fish to the horse—and that is the theory of evolution in a nutshell—is more like what is coming out of the horse’s behind than it is like genuine science.  The modern theory of evolution is not science; it is science “falsely so called.”  It is a fairy tale, and it is one of the most outlandish fairy tales you’ll ever hear.


David Read was educated at Southwestern Adventist University and the University of Texas School of Law.  He is a recovering attorney who is starting an independent apologetics ministry.

Share Button

Comments

Designer of the DNA Code — 7 Comments

  1. May I add a recommendation here? For those who are into science and can deal with technical things and enjoy really digging into something may I suggest the book, "Signature in The Cell" by Stephen C. Meyer, HarperCollins Publishers (ISBN 978-0-06-147278-7).

    In the book Dr. Meyer not only looks at processes but mainly asks how could DNA come into being by chance even over millions of years. The book tends to give evolutionists heartburn just by mentioning it.

    Like(0)
  2. I stumbled upon this article while looking for the current week's lesson. I must say that this is mind blowing. Good work and God bless. Thanks for sharing.

    Like(0)
  3. What an awesome God! No man in his right mind can argue against this marvelous discovery of science about DNA. Evolutionist has lost footing on this issue. Thanks for a very helpful information

    Like(0)
  4. I woke up today to read the current Sabbath School Lesson Quarterly and learned a splendid biological-spiritual analysis of God and DNA. Indeed, Creation Speaks the Power of God where no man--mightiest of the mighty, greatest among the great--can ever copy.

    Like(0)
  5. [Moderator Note: This comment is rejectable because it contains neither a real name nor a valid email address. But we thought our readers should have a chance to respond to this.]

    Consider this fair warning: This article completely misunderstands evolution. Do not use these examples in discussions, or you'll end up embarrassed.

    The claim that evolution happens by random modification is a straw man argument. The point of evolution is exactly the opposite, genetic changes are guided by the environment of the individual. The steps between the fish and the horse are not random mutations, but small incremental steps that each improve the reproduction rate of that individuals genes.

    The computing example from the article is very embarrassing to the author. There is a whole branch of computing devoted to making programs evolve to solve the problem better. Look up genetic programming.

    I repeat: The reasoning in this article is flawed. Do not repeat any of these arguments, or you'll look like an idiot.

    Like(0)
    • Helpful Passer said, "The point of evolution is exactly the opposite, genetic changes are guided by the environment of the individual." This is no better than the random mutations model that has been pushed by evolutionists for over 100 years. It makes the environment a selector with some sort of intelligence that is able to determine what is needed. I will concede the point that life adapts to the environment according to predetermined criteria in the DNA and nothing more.

      Good grief folks, the environment has no way of determining how the first cell was to be made especially when considering its immense complexity. Besides, the article was mainly dealing with DNA which evolutionists have no idea how it came to be. Evolutionist' meager experiments along this line are all woefully inadequate as a explanation.

      Furthermore, generally, the scientific community has no answer as to how life started. The only answer they now give is that life came from some other place in the universe without getting into its origin.

      Like(0)
    • "helpful passer" is mistaken when he claims that genetic changes are guided by the environment. A standard evolutionary text by Douglas Futuyma states, "The major tenets of the evolutionary synthesis, then, were that populations contain genetic variation that arises by random (ie. not adaptively directed) mutation and recombination; . . ." Evolutionary Biology, 1986; p.12

      In the Neo-Darwinian theory, mutations are the ultimate source of all new genetic information, and mutations are themselves the result of random DNA copying errors. There is a non-random component to evolution, the idea being that on rare occasions a mutation will be helpful to the organism and will thus be "selected" by natural selection. But the mutations themselves are not directed by environmental influences.

      We may eventually discover that mutations can be triggered by cues from the environment, but that is not the Neo-Darwinian theory. And if that turns out to be the case, it represents an additional level of genetic complexity difficult to explain without design. It would suggest a designed, built-in mechanism that helps a line of organisms to adapt to a new environment.

      Genetic Programming is still intelligently guided programming. There is an algorithm and a fitness function determined by the programmer, who is intentionally trying to end up with a program to solve a specific problem. There are several run throughs, after each of which the likeliest candidates are selelcted and "bred" together. The process is more like selective breeding than natural selection, because it is ultimately intelligently guided.

      Like(0)

What do you think? If you like a comment, just [Like] it or post a thoughtful reply. Please provide a working email address and your real first AND last name to have your comment published.

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Notify me of followup comments via e-mail. You can also subscribe without commenting.